2. LINEAR
TRANSFORMATIONS

§2.1. Linear Transformations
Let U, V be vector spaces over the field F. A
function (map) f:U—V is called a linear transformation
if:
o f(uy + uy) =f(up) + f(up) for all uy, u, € U and
o f(Au)=Af(u)forallue Uand A € F.

Example 1:

(1) Let F" be the space of all n-dimensional column
vectors over F and let A be any n x n matrix over F. Then
f(v) = Av is a linear transformation.

(2) Let E be the 3-dimensional Euclidean space and let
OP be a line through the origin.

Let R be a rotation about OP through a certain angle.
Then R is a linear transformation.

This because a rotation will take a parallelogram to a
congruent parallelogram and so R preserves vector
addition. Also, a vector gets rotated to one of the same
length, and so R satisfies the second property of the
definition.
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(3) Let Diff(R) be the space of differentiable functions
from R to R. Then differentiation is a linear
transformation.

. d(yi+y2) _dy: . dy» d@y) _ . dy
That is ax = dx + x and dx -xdx.

(4) Let R? be the space of real vectors v = (x, y) and
leta e R2
Then f(v) = a.v is a linear transformation from R? to R.

Example 2: In the days before Sodoku they had things
called magic squares. These were square tables (we would
call them matrices) with a number in each square. Every
row, every column, and both diagonals had to have the
same total. It was usually assumed that the entries are all
positive integers and that there are no repetitions, but
these aren’t strictly necessary. Albrecht Ddrer, in his
engraving Melancholia, gives an example of a 4x4 magic

square:

5|10 (11 | 8

4 115 (14| 1
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A most uninteresting 4 x 4 magic square is:

e
e

e L
S

and an even more boring example is the zero matrix.

Let us denote the set of n x n magic squares, with
real number entries, as Qn. This is a vector space under
matrix addition and scalar multiplication. The function
T:Qn — R, where T(M) is the common total for the magic
square M, is a linear transformation.

Theorem 1: If f:U — V is a linear transformation:
(1) f(~v) =—f(v) forall v € V,
(2) f(0) =0,
Proof: (1) f(—v) = f((-1)v) = —f(v).
(2) f(0) =(0.0) = 0f(0) = 0. Y ©

NOTE: In (2), for clarity, we distinguish between the
zero scalar and the zero vector by making the zero vector
bold. However keep in mind that they could well be the
same thing in certain examples.

Recall that the product of two functions f, g is fg
where (fg)(x) = g(f(x)). We first apply the left-hand map
and then the right-hand one. Don’t confuse this with
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composition of functions, which is the same idea
backwards. The composition of f, g is f o g where

(fo9)(x) =f(a(x).

Theorem 2: The product of two linear transformations is
a linear transformation.
Proof: Suppose f:U — V and g:V — W are linear
transformations.
Then for all us, u; € U,
(fg)(uy + up) = g(f(uy + uz)) by definition of fg

= g(f(uy) + f(uz)) since fis linear

= g(f(uy)) + g(f(uz)) since g is linear

= (fg)(u1) + (fg)(u2) by definition of fg.
The other property for linearity is proved similarly, so
fg:U —» Wi is linear. %©

§2.2. Kernels and Images

The image of a linear transformation
.U — V is defined as for any
function: im(f) = {f(u) |u € U}

The kernel of f is defined to be:
ker(f) ={u € U | f(u) = 0}.
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Theorem 3: Suppose U, V are vector spaces over F.
If fU — V is a linear ©
transformation then:
(1) im(f) is a subspace of V;
(2) ker(f) is a subspace of U
and

(3) dim im(f) + dim ker(f)

= dim(V).
Proof: -
(1) Let f(uy), f(uz) € im(f). )
Then f(uy) + f(uy) = f(uy + uy) € im(f) and so im(f) is
closed under addition.
Let f(u) € im(f) and let A € F. Then Af(u) = f(Au) € im(f)
and so im(f) is closed under scalar multiplication.
Hence im(f) is a subspace of V.

T Call me Colonel Kernel.

That's just corny.

(2) Let uy, uy, u € ker(f). Then f(uy) = f(uz) = f(u) = 0.
Now f(uy + uy) = f(uy) + f(u) =0 + 0 = 0 and so ker(f) is
closed under addition.

Also f(Au) = Af(u) = A0 = 0 and so ker(f) is closed under
scalar multiplication.
Hence ker(f) is a subspace of V.

(3) Let uy, Uy, ..., uk be a basis for ker(f).

Extend this to a basis us, Us, ..., up for U.

Then we’ll show that f(ur+1), f(ur+2), ..., f(un) is a basis
for im(f).
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(@) f(ur+1), f(ur+2), ..., f(un) span im(f):
Let f(u) € im(f), where u € U.
Then u = Aqug + AUz + ... AUk + Ak+1Uk+1 + ... + Anup for
some Ai’s € F. Hence
f(U) = f(?\.1U1 + AoUp + ... AkUk + Ak+1Uk+1 + ... + knun)
= Maf(up)+ Aaf(u)+ ... Akf(uk)
+ M+1f(Uk+1) + ... + Anf(un)
=0+0+...+0+ 7\,k+1f(Uk+1) + ...+ an(un)
= M+1f(uk+1) + ... + Anf(un).

(b) f(ur+1), f(ur+2), ..., f(un) are linearly independent:
Suppose Ak+1f(uk+1) + ... + Anf(un) = 0.

Then f(Ak+1Uk+1 + ... + Anun) = 0.

Hence Ad+1Uk+1 + ... + Anun € ker(f).

SO Ak+1Uk+1 + ... + AnUn = Y1Ug + YUz + ... + ykUk for some
Yi’s € F.

Hence yju; + YoUp + ... + ykUk — Ak+1Uk+1 — ... — ApUn =0
and since these vectors are linearly independent:
Yi=Yo=...=yk=Xk+1=...=xp=0. YO

We define the rank of a linear transformation f:U
— V to be dim im(f) and its nullity is defined to be dim
ker(f). The above theorem can be expressed by saying:

rank + nullity = dimension of the space
you’re mapping from.
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Example 3: Projecting a point in 3-dimensional
Euclidean space onto the x-y plane is a linear
transformation. Its image is the x-y plane, of dimension 2.
Its kernel is the z-axis, of dimension 1. The above theorem
Is verified by the fact that2 + 1 = 3.

Example 4: What is the dimension of Qs, the space of all
3x3 real magic squares?
Solution: The kernel of the ‘total’ linear transformation
T given in Example 2 is the set of those whose total is
zero. It is easy to give a general description of the
elements of ker(T).

Let’s begin by ensuring that the rows and columns
each total zero.

a —
C d -c—d
—a—-c|-b-d|a+b+c+d

For the diagonals to total zero we need to satisfy the
system of equations:
{2a+b+c+2d:0
—2a—-b-c+d=0

Adding the equations gives 3d =0,sod =0.
Then ¢ =—2a —Db. This gives:

a b |-a-b
—2a-b| 0 |2a+Db
a+b |-b| -a
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By takinga=1,b=0and b =1, a=0 we can obtain a
basis for ker (T):

1 |0 |1 0|1 |1
20 |2 -1/0 |1
1 |0 |1 1 |-1|0

So T has nullity 2. The image of T is clearly R, which is
1-dimensional, so dimQz;=1+2=3.

An isomorphism f:U — V (often called a non-
singular linear transformation or an invertible linear
transformation) is a linear transformation that is both 1-
1 and onto. Like any 1-1 and onto function it has an
inverse f . In this case the image is V and the kernel is
{0}. So the rank is dim(V) and the nullity is 0. Hence
dim(V) + 0 = dim(U).

If there exists a isomorphism f:U — V we say that
U and V are isomorphic, and write U = V. Since rank plus
nullity is the dimension of the space you’re mapping
from, dim(V) = dim(U). Hence isomorphic vector spaces
have the same dimension.

Conversely if U and V have the same dimension
(over the same field) then they are isomorphic. One only
has to take a basis for each, {us, ..., un} and {vi, ..., vn}
and map AqU1 + ... + AnUn tO AqVi + ... + AnVn.

Isomorphic objects in any algebraic setting can be
thought of as being the same, when viewed in isolation.
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Their structure is the same and they may only differ in
notation. The isomorphism gives the coding that takes one
type of notation to another. So we can paraphrase the
above result by saying that over a given field there is only
one vector space (up to isomorphism) of each dimension.

If f is an isomorphism from a vector space to itself
we call it an automorphism. The most obvious
automorphism is the identity map I, that takes each vector
to itself.

Theorem 4: The inverse of an isomorphism is an
isomorphism.
Proof: Let f:U — V be an isomorphism. Since fis 1-1 and
onto, f Lexistsand ff1=f1f=1I.
Let Vi, Vo € V.
Then v; = f(u;) and v, = f(uy) for some uy, u; € U.
So f vy + vp) =71 (uy) + f (Up))
= f-1(f (uy + up)), since f is linear
= ff‘l(ul + U2) =U; + U
=f1(vy) + fY(vp). YO

The other property of linearity is proved similarly.
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82.3. Coordinates

With our definition of vector space there is no
mention of the coordinates of a vector. Coordinates can
only be defined once we fix on a particular basis.

If vi, Vo, ..., vn IS a basis for the finite dimensional
vector space V then every vector can be expressed as a
linear combination

V =AVi+ AoV + ...+ AnVp,
because the vj span V,
and moreover the A;’s are unique, for a given v, because
the vj are linearly independent.

We define the coordinates of such a v, relative the
basis vi, Vo, ..., vnas (A1, Az, ..., An). If we have a
different basis, the coordinates will be different.

Example 5: The coordinates of (3, 2, 5) relative to the
standard basis are (3, 1, 5) because
(3,2,5)=23(1,0,0) +2(0, 1, 0) +5(0,0, 1).
What are the coordinates relative to the basis
(1,1,0),(0,2,1),(1,1,1)
Solution: We must write (3, 2, 5) in the form:
x(1,1,0) +y(0,2,1)+z(1,1,1).

X+z2=3
This gives us a system of equations: (X +2y +z=2,
y+z=5

Writing this as an augmented matrix and putting this into
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echelon form we get (leaving out the vertical bar that
represents the equal signs):

101 3 101 3 101 3
2112|-5|01-1 4|—>|01-1-4.
0115 011 5 002 9

S0z=9/2,y=-4+9/2=1/2and x =3 -9/2 = -3/2.
So the required coordinate vector is (-3/2, 1/2, 9/2).

Example 6: The functions sin x and cos x form a basis for
the space of solutions to the differential equation
dy
dx? ty= 0.
What is the coordinate vector of sin(x + n/6) relative to
this basis?
Solution: sin(x + m/6) = sin x cos(n/6) + cos x sin(7w/6)

= 153 sin x + % cos X,
so the coordinate vector of sin(x + =/6) relative to the
above basis is (¥2\3, %).

82.4. Change of Basis

Sometimes we’d like to change bases. We may start
with one basis and then realise that another basis would
be more convenient. Can we readily move from one
coordinate vector to another, for the new basis?

A basis is not just a set of vectors, because the order
in which we choose to write them is important. So a basis
Is more like a vector, except that the components are not
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scalars, they are vectors. But we can write the basis as if
it is a vector. We write oy, o, ..., On @S
[a] = (o, a, ..., an).
We’ll write the coordinates of v relative to this
basis as (o1, o, oiz) Where

-0

Putting this all together we could write the basis as:

1 0) (1
[a] = 1 2 L|| which could be written more
0 1) \1
1 01
simply as the matrix 121 :
011

We shall write the column vector giving the
coordinates of v relative the basis [a] as [ﬂ :
Example 7: If [o] is the first basis in example 18 and [(]
is the second basis, and v = (3, 2, 5), find {ﬂ and {%} :

Solution: {ﬂ = Gj and [ﬂ = (_532) :
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It would be nice if we could easily move from one
coordinate vector to the other, especially if we have
several vectors to convert. We do this using the change
of basis matrix. This has, as its columns, the coordinate
vectors for each of the vectors in the first basis, relative to
the second.

Let [a] = (o, a2, ..., o) and [B] = (B1, B2, ..., Bn)
be two bases for the n-dimensional vector space V. We

oS- (2]

It will be an n x n matrix.

Example 8: Let o = ((7, 16), (2, -1)), B = ((2, 5), (1, 1)).
&
What is LJ ?

Solution: (7, 16) = a(2, 5) + b(1, 1) for some a, b.
Equating and solving we find thata=3, b = 1.

These are the coordinates of (7, 16) relative to f.
Similarly the coordinates of (2, —1) are (-1, 4).

SHES

Theorem 5: [a] = [B][%} :

Proof:

Let the coordinate vector of o, relative to the basis [(3] be
(asj, azj, ... , anj)-

Then for each j, oj = azjp1 + azjf2 + ... + anjpn.
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di1 d12 ... ain
o

S0 [B]M = (B, B ... p)| 2

nidn2 ... ann

= (a‘li a2, ..., (Xn). W©

Example 9: Let U =R2={(x,y) | X,y € R}.
Let o be the standard bases for U and let

B = {(11 2)1 (1’ _1)}
be another basis.

o = (1, 0) = (U3)(L, 2) + (2/3)(L, —1) (1/3)B1 + (2/3)B2.
o2 = (0, 1) = (U/3)(L, 2) — (L/3)(L, -1) = (1/3)B:1 — (1/3)o.

So {%} = @@ and [%} = (_11/?3J and hence
[g} _ (1/3 1/3} |
Bl \2/3-1/3
91 2] = 62 82 (59 1)
= ((1/3)B1 + (2/3)B2, (1/3)B1 — (1/3)B2)

= (ou, a2)

= [a].

§25. The Matrix of a Linear

Transformation
Suppose U, V are vector spaces over the field F, of
dimensions m, n respectively.
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Let f:U — V be a linear transformation and let o be a basis
for U and B a basis for V. We define the matrix of f
relative to these bases to be:

f(o)| _ Qf(ou) f(az) [f(am)D
5 =L
Example 10: Let U =R3={(x,y, 2) | X, Y, Z € R},
V=R>={(x,y) %y e R}.
Letf(x,y,z)=(x+y+2z 2x-Y).
Let o be the standard bases of U and
let B ={(1, 2), (1, —1)} (another basis for V).
a1 =(1,0,0) and so f(ar) = (1, 2).
a2 = (0, 1, 0) and so f(a) = (1, -1).
as = (0,0, 1) and so f(as) = (1, 0).
). ]

p )Tl
.

B |- @@ since (1, 0) = (1/3)(1, 2) + (2/3)(1, -1).

o%]-(32 33
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Theorem 6: { (B)} r(g)} {ﬂ
Proof: Suppose dimU =m, dimV =n.

M
Letv = Ao + A0z + ... + AmOim, SO that[ﬂ = ( j :
Am
Then f(v) = Aif(o) + Aof(a2) + ... + Amf(om).
Suppose that f(oi) = aiis + aziff2 + ... + amiPpm for each i.

Then [%} = (aij)-
So we may express f(v) as
7»1(&11[31 + a21[32 + ...+ amiBm) + ...
A Xm(almﬁl + azmﬁz + ...+ ammBm)
= (&117»1 + ...+ almkm)[}l + ...+ (@amamt ..+ amnkm)Bm.

e[S T[]

amAl + ... +amni

This means that, relative to these bases, the action
of the linear transformation f is equivalent to multiplying

(o)
p

difficulty remembering which symbol goes where in the
Kﬂ} _ [Kgl
p p

the coordinate vector, on the left, by{ } If you have

V] .
formula{ Ma} just remove the parentheses

58



: Vv o :
and brackets and write - = o Then it is just as if you

E.

are cancelling the o’s.

Example 11: Letv=(1, 1, 1) in example 9.

2] -3

f(v) = (3, 1) = (4/3)(1,2) + (5/3)(} —1) = (4/3)B1 + (5/3)B..
o[ -(49) -2 23)1) [ty

Theorem 7: Suppose U, V, W are vector spaces over F,
with bases a, B, y respectively.
Suppose f:U —» V and g:V — W are linear
transformations.

2] [
Proof: This because fg is achieved by first carrying out f
and following it by g. In terms of the coordinate vectors
this is equivalent to multiplying {ﬂ on the left by the
matrix for f and then multiplying on the left by the matrix
for g. This is why the order of the matrices is the reverse
of the linear transformations. If you remember this you
can remove the parentheses and cancel the 3’s on the RHS
as a way for checking that you have remembered the
formula. % ©
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Example 12: Let U =R® V = R?2and W = R

Leta=((1,1,1),(1,1,0), (0,1, 1)) be the basis for U,
B=1((2,3), (-1, 0)) be the basis for V and
v=((1,0,0,0),(0,1,0,0),(0,0,1,1),(1, 2,3,4)) be

the basis for W.

Let f:U — V be defined by f((x,y,2)) = (x +y, y + z) and

let g:V — W be defined by g(x, y) = (X, x +y, x =Y, =Y).

Then f(ou) = (2, 2), f(az) = (2, 1) and f(as) = (1, 2), so

{m} _[2/3 1/3 2/3}
B | “\-23 —a413 13)-

Also g(B1) = (2,5, -1, -3) and g(B2) = (-1, -1, -1, 0) so
4 —
[gﬂj}} 19 -3

y 1 |5 4]

-2 1
4 -2
%m@ﬂ@ﬁ@
2

1
4 4 2
8 7 5
6 7 2|
2 -2 -1

(fg)(au) = (2, 4,0, -2), (fg)(02) = (2, 3, 1, -1) and
(fg)(as) = (1, 3, -1, -2)
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4 4 2
y |76 7 2
-2 2 _

The matrix of a linear transformation f:U — V depends
on the bases for U and V that we choose. But with
different bases these matrices would be related to one
another.

Theorem 8: Suppose a, B are two bases for U and
suppose that vy, o are two bases for V and that f:U — V' is
a linear transformation.

menl Y <[5 L3

Proof: Let Bi = ajjois + ... + amiom and
Oi = bijoiy + ... + bmijom for each i.

Let A= {g} = (ajj)and B = E} = (bij).

Let f(ati) = C1iys + ... + Cniyn fOr each i.
f
LetC= {%} = (cij).
Now f(Bi) = azif(on) + ... + amif(om)
= ali(clm + ...+ CnlYn) + ...
. ami(Clm’Yl + ...+ Cnm’Yn)
= (8.1iC11 + ... am1C1m)Y1 + ...
R (aliCnl + ...+ amiCnm)’yn
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_ a1iC11 T ... ¥ @miCim
ft] ("

a1iCn1 + ... + @miCn

Cudqit ... + ClmamiJ
CniCnz t ... ¥ Chm@m
This is the i’th column of CA.

o 1]

This is the i’th column of DCA where D = P}

e 1] a8 0

Again, if you have trouble remembering which symbols
go in the numerator and which in the denominator, just
ignore the brackets and parentheses and check that, if they
were fractions, the right hand side would cancel to equal

the left hand side: —E v p
8Ty Tal

Example 13: Let U=R?and V = R3.
Let o be the standard basis for U and let
B=1((1,1), (1, -1)) be another basis.
Lety=((1, 1,0), (0,1, 1), (1,0, 1)) be a basis for V and
let & be the standard basis for V.
Let f: U — V be the linear transformation
f(x, y) = (y, x+y, X).
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] {312). [5]() s [8] -2,
{ [l - ez ag)
(1323
o

L
Theorem 9: If a, B are bases for a vector space V then:

ol

ol |B]

Proof: Taking f to be the identity linear transformation,
and a =y, B = o in theorem 7 we get

SERTERAL RS

Theorem 10: Suppose a, 3 are two bases for V and that
f:V — V is a linear transformation.

mhen| 03] = B K212,
B o o Jla
Proof: The result follows from theorems 6 and 7. % ©
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If we removed brackets and parentheses this would

B _

: a I
appear as: BB o o

We can summarise these last theorems as follows:

o L=l e | eemg

o]l | (] fomen

LRI | PR

EXERCISES FOR CHAPTER 2

Exercise 1: Let R[x] be the space of all real polynomials
in x. Define @: R[x] — R3 by ®(f(x)) = (f (1), f (2), f (3)).
Show that @ is a linear transformation and find ker ® and
im ®.

Exercise 2: Find the coordinates of (1, -5, 7) relative to
the basis (2, 1, -1), (1, 0, 1), (-1, 1, 5).

Exercise 3: A parallelogram in R® has vertices (1, 2, 3),
(6,3,5), (-2, 6,10), (3, 7, 6). Find the coordinates of these
points relative to the basis

4,1,3), (-1, 2,2), (8, -11, 7).
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Exercise 4: Find the matrix of the linear transformation
T(X,y,2)=(X+2y—-5z, 2x+3y -2z, 3y —42)
with respect to:
(i) the standard basis, a;
(i) the basis B = {(1, 1, 0), (2, -1, 2), (3, 0, -4)}.

Exercise 5: Let U = (xe*, e*) and V = (1, x).
Let Dy, Dy be the differentiation operator restricted to U,
V respectively. Find the rank and nullity of each of these.

Exercise 6:

(i) Show that B = {sin 2x, sin®x, cos?x, 2x} is a basis for
V = (sin 2X, cos 2x, sin®X, cos?X, X).

(if) Show that differentiation is a linear transformation
fromVtoV.

(iii) Find the matrix of differentiation relative to this basis.

SOLUTIONS FOR CHAPTER 2

Exercise 1:

O[f(x) + g(x)] = (f(1) + g(2), f(2) + 9(2), f(3) + 9(3))
= (f(2), f(2), £(3)) + (9(2), 9(2), 9(3))
= ®[f(x)] + ©[g(X)]-

O[k(f(x))] = (kf(1), kf(2), kf(3))

=k(f(2), (2), f(3)]
= kd[f(x)].
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ker @:
ker @ = {f(x) | (f(1), f(2), f(3)) = (0, 0, 0)}
={f(x) [f(1) =0, f(2) =0, (3) = 0}
= (x-1)(x-2)(x — 3) R[X]
(this is the set of all multiples of (x — 1)(x — 2)(x — 3)
So ker @ = (x -1)(x — 2)(x — 3) R[X].
im @: Suppose (a, b, ¢) € R®.
We must find a polynomial f(x) such that
f(1) = a, f(2) =b and f(3) = c.
Consider a polynomial f(x) = px? + gx + .
If this satisfies the requirements then
p+ q+r=a
4p+2q+r=>b
Op+3q+r=c
So we need to show that this system is consistent.
We’d would need to be able to solve the equation

1 1\(p a
21[q:b
3 1)(r C

1

2

3

1
Since 1 Is a Vandermonde matrix itis invertible
1

9

and so this equation has a unique solution. Thus there
does exist a polynomial satisfying the requirements.

We can explicitly find such a quadratic, without
solving the above equations, very simply:

66



Take f(x) = (x — 1)(x — 2)(c/3) + (x — 1)(x — 3)(-h)
+ (X — 2)(x — 3)(a/2).
Clearly f(1) = a, f(2) = b, f(3) =c.

Exercise 2: We must write (1, -5, 7) in the form:
X(2,1,-1)+y(1,0,1) + 23, 2,5).

This gives us a system of equations that can be

represented as:

2 1-1]1 101]-5 10 1]-5
101[-5|_,]21-1/1|_]01-3|11
-115]|7 -11 5|7 01 6|2

10 1]|-5 10 1 (-5
5101311 | _,/01-3|11 |

00 9 -9 00 1 -1
Soz=-1,y=11-3=8,x=-5+1=-4.
Hence the coordinates of (1, -5, 7) relative to the basis
(2,1,-1),(1,0,1),(3,2,5) are (-4, 8, -1).

Alternatively, we can write o = standard basis, = this
new basis and v = (1, -5, 7).

2 1 -1

Vv L B
Thenb}z -5 and[ojz 1 01
7 -1 1 5
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-1 6 1
e 9 3
9
1 -3 -1
. -1 -6 1 1
Hence[%}_g -6 9 -3||-°
1 -3 -1)(7
36 —4
:_% 72(_| 8
9 -1

For a single vector this is more work, but if we have
several it becomes quite efficient.

Exercise 3: Let a be the standard basis and let  be this

4 -1 8
new basis. Then P} -1 2 -11 .
o 3 2 7
36 9 27
-1 1
Hencem:{ﬁ} =(2_34J 26 52 52|
Bl Lo 8 -11 -7
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1
So 2 - (2—34) -26
3 8
6 36
CHREN (LJ -26
5 234)| 4
-2 36
1
10 234 3

36

9 27
-52 52
-11 -7

- ()
~ 234
9 27\(6
52 5213

135




1 2
2 3
0 3

Exercise 4: (i)

333

- (ij 130 |
234)| o
5
1.
4

(i) T(2,1,0)=(3,5,3), T(2, -1, 2) = (-10, -1, —-11),
T(3,0,-4) = (23, 10, 16).

We must now find the coordinates of these images
relative to the basis p.

Let (3,5,3)=x(1, 1,0) +y(2, -1, 2) + z(3, 0, -4).

12 3|3 1 2 3|3 12 313
1-10|5/,|0-3-3|2|_,|01-11|8
0 2 —-43 0 2 -4/3 02 -4]|3
12 3| 3
5(01-11] 8 |
00 18 |-13
13 143 1 2 39 91

S0z=-7g,¥y=8-"g =1gandx=3-75 +753 =713

Let (-10, -1, -11) = x(1, 1, 0) + y(2, -1, 2) + 2(3, 0, —4).
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1 2 3|-10 1 2 31]-10
1-10|-1|_/0-3-3|09
0 2 —-4|-11 0 2 —-4|-11
12 3 |-10 12 3 |-10
5|01 -11|-13| |01 -11]-13|
02 -4|-11 00 18| 15

_15_5 55 _ 28
~ 46 15 _ 29

Let (23, 10, 16) = x(1, 1, 0) +y(2, -1, 2) + z(3, 0, —4).
1 2 3|23 1 2 3] 23
1-10(10|_,(0-3-3/-13
0 2 -4|16 0 2 —-4| 16

12 3]23) (12 3] 23
01-1119| _, |01 -11| 19 |
02 -4|16 00 18 |-22

_ 1o 121 _50
_ ., 100 33 _ 140

Hence the coordinates of the images with respect to 3 are,
respectively,

—>

and
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91 -87 280

% 1 % 69 % 100 |
-13 15 —-22
The matrix of T with respect to B is therefore
91 -87 280
—! 1 -69 100
18 '
-13 15 -22

However it is much easier to use the change of basis
theorems.

(1 2 -5
{@:23—1
0 3 -4
1 2 3
H_l—lo_
0 2 -4
12 3) (4143
-1
Hence[ﬂzl_l 0 =E4_4 3.
—4 2 -2 -3
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4 14 3)\(1 2 -5\(1 2 3
1la —4 3ll2 3 -1l[1 21 o

182 -2 -3){0 3 -4)l10 2 -4
. 32 59 -46\(1 2 3
-—/-4 5 -=-28||1 -1 O
18
-2 -11 4 0 2 -4
. 91 -87 280
-—| 1 -69 100
18 '
-13 15 -22

Exercise 5: The kernel of D is the set of all constant
functions.

Since 1 ¢ U, ker Dy = 0.

Hence rank(Dy) = 0 and so nullity(Dy) = 2.

Since 1 € V ker Dy = (1).

Hence rank(D,) = 1 and so nullity(Dy) = 1.

Exercise 6:

(i) cos 2x = cos®x — sin®x and x = ¥ (2x) so

V = (sin 2X, sin?x, cos?x, ). That is, B spans V.

We must now show that 3 is linearly independent.
Suppose p sin 2x + g sin?x + r cos®x + sx = 0 for all x.

Putx=0:Then r+s=0. .. (1)
Putx=n/4: Thenp+% q+%r+%sn=0 .. (2)
Putx =m/2: Then q+%sx=0. .. (3)
Putx =m: Then r+sx=0. .. (4)
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From (1), (4) we conclude that s = 0. From (1) we now
conclude that r = 0.

From (3) we conclude that g = 0. From (2) we conclude
thatp = 0.

Hence B is a linearly independent set and so is a basis for
V.

(i) We know that differentiation is a linear
transformation. What is at issue here is whether its image
is a subset of V. Letting D represent differentiation we
have:

D sin 2X = 2¢0S X.2X = 2C0S?X — 2sin’X € V,

D sin®x = 2sin X.cos X =sin 2X € V,

D cos?x = — 2sin X.cos X = —sin 2x € V.

D x =1 =sin’ + cos’x € V.
(i) We can now write down the matrix of D relative to

0O 1 -1 0
2 0 0 1
thebasisBas| _2 o 0 o0
O 0 0 O
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