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2. LINEAR 

TRANSFORMATIONS 
 

§2.1. Linear Transformations 
 Let U, V be vector spaces over the field F. A 

function (map) f:U→V is called a linear transformation 

if: 

• f(u1 + u2) = f(u1) + f(u2) for all u1, u2  U and 

• f(u) = f(u) for all u  U and   F. 

 

Example 1: 

(1) Let Fn be the space of all n-dimensional column 

vectors over F and let A be any n  n matrix over F. Then 

f(v) = Av is a linear transformation. 

 

(2) Let E be the 3-dimensional Euclidean space and let 

OP be a line through the origin. 

Let R be a rotation about OP through a certain angle. 

Then R is a linear transformation. 

This because a rotation will take a parallelogram to a 

congruent parallelogram and so R preserves vector 

addition. Also, a vector gets rotated to one of the same 

length, and so R satisfies the second property of the 

definition. 
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(3) Let Diff(ℝ) be the space of differentiable functions 

from ℝ to ℝ. Then differentiation is a linear 

transformation. 

That is 
d(y1 + y2)

dx
 = 

dy1

dx
  + 

dy2

dx
  and 

d(y)

dx
 = 

dy

dx
 . 

 

(4) Let ℝ2 be the space of real vectors v = (x, y) and 

let a  ℝ2. 

Then f(v) = a.v is a linear transformation from ℝ2 to ℝ. 

 

Example 2: In the days before Sodoku they had things 

called magic squares. These were square tables (we would 

call them matrices) with a number in each square. Every 

row, every column, and both diagonals had to have the 

same total. It was usually assumed that the entries are all 

positive integers and that there are no repetitions, but 

these aren’t strictly necessary. Albrecht Dürer, in his 

engraving Melancholia, gives an example of a 44 magic 

square: 
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A most uninteresting 4  4 magic square is: 

 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

 

and an even more boring example is the zero matrix. 

 

 Let us denote the set of n  n magic squares, with 

real number entries, as Qn. This is a vector space under 

matrix addition and scalar multiplication. The function 

T:Qn → ℝ, where T(M) is the common total for the magic 

square M, is a linear transformation. 

 

Theorem 1: If f:U → V is a linear transformation: 

(1) f(−v) = − f(v) for all v  V; 

(2) f(0) = 0, 

Proof: (1) f(−v) = f((−1)v) = −f(v). 

            (2) f(0) = f(0.0) = 0f(0) = 0. ☺ 

 

NOTE: In (2), for clarity, we distinguish between the 

zero scalar and the zero vector by making the zero vector 

bold. However keep in mind that they could well be the 

same thing in certain examples. 

 

 Recall that the product of two functions f, g is fg 

where (fg)(x) = g(f(x)). We first apply the left-hand map 

and then the right-hand one. Don’t confuse this with 
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composition of functions, which is the same idea 

backwards. The composition of f, g is f  g where 

(f  g)(x) = f(g(x)). 

 

Theorem 2: The product of two linear transformations is 

a linear transformation. 

Proof: Suppose f:U → V and g:V → W are linear 

transformations. 

Then for all u1, u2  U, 

(fg)(u1 + u2) = g(f(u1 + u2))  by definition of fg 

                     = g(f(u1) + f(u2))  since f is linear 

                     = g(f(u1)) + g(f(u2))  since g is linear 

                     = (fg)(u1) + (fg)(u2)  by definition of fg. 

The other property for linearity is proved similarly, so 

fg:U → W is linear. ☺ 

 

§2.2. Kernels and Images 
The image of a linear transformation 

f:U → V is defined as for any 

function:  im(f) = {f(u) | u  U}. 

 

The kernel of f is defined to be:  

ker(f) = {u  U | f(u) = 0}. 
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Theorem 3: Suppose U, V are vector spaces over F. 

If f:U → V is a linear 

transformation then: 

(1) im(f) is a subspace of V; 

(2) ker(f) is a subspace of U 

and 

(3) dim im(f) + dim ker(f) 

      = dim(U). 

Proof: 

(1) Let f(u1), f(u2)  im(f). 

Then f(u1) + f(u2) = f(u1 + u2)  im(f) and so im(f) is 

closed under addition. 

Let f(u)  im(f) and let   F. Then f(u) = f(u)  im(f) 

and so im(f) is closed under scalar multiplication. 

Hence im(f) is a subspace of V. 

 

(2) Let u1, u2, u  ker(f). Then f(u1) = f(u2) = f(u) = 0. 

Now f(u1 + u2) = f(u1) + f(u2) = 0 + 0 = 0 and so ker(f) is 

closed under addition. 

Also f(u) = f(u) = 0 = 0 and so ker(f) is closed under 

scalar multiplication. 

Hence ker(f) is a subspace of V. 

 

(3) Let u1, u2, …, uk be a basis for ker(f). 

Extend this to a basis u1, u2, …, un for U. 

Then we’ll show that f(ur+1), f(ur+2), …, f(un) is a basis 

for im(f). 
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(a) f(ur+1), f(ur+2), …, f(un) span im(f): 

Let f(u)  im(f), where u  U. 

Then u = 1u1 + 2u2 + … kuk + k+1uk+1 + … + nun for 

some i’s  F. Hence 

f(u) = f(1u1 + 2u2 + … kuk + k+1uk+1 + … + nun) 

       = 1f(u1)+ 2f(u2)+ … kf(uk) 

                                            + k+1f(uk+1) + … + nf(un) 

       = 0 + 0 + … + 0 + k+1f(uk+1) + … + nf(un) 

       = k+1f(uk+1) + … + nf(un). 

 

(b) f(ur+1), f(ur+2), …, f(un) are linearly independent: 

Suppose k+1f(uk+1) + … + nf(un) = 0. 

Then f(k+1uk+1 + … + nun) = 0. 

Hence k+1uk+1 + … + nun  ker(f). 

So k+1uk+1 + … + nun = y1u1 + y2u2 + … + ykuk for some 

yi’s  F. 

Hence y1u1 + y2u2 + … + ykuk − k+1uk+1 − … − nun = 0 

and since these vectors are linearly independent: 

y1 = y2 = … = yk = xk+1 = … = xn = 0. ☺ 

 

 We define the rank of a linear transformation f:U 

→ V to be dim im(f) and its nullity is defined to be dim 

ker(f). The above theorem can be expressed by saying: 

 

rank + nullity = dimension of the space 

you’re mapping from. 
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Example 3: Projecting a point in 3-dimensional 

Euclidean space onto the x-y plane is a linear 

transformation. Its image is the x-y plane, of dimension 2. 

Its kernel is the z-axis, of dimension 1. The above theorem 

is verified by the fact that 2 + 1 = 3. 

 

Example 4: What is the dimension of Q3, the space of all 

33 real magic squares? 

Solution: The kernel of the ‘total’ linear transformation 

T given in Example 2 is the set of those whose total is 

zero. It is easy to give a general description of the 

elements of ker(T). 

 Let’s begin by ensuring that the rows and columns 

each total zero. 

 

a b − a − b 

c d − c − d 

− a − c − b − d a + b + c + d 

 

For the diagonals to total zero we need to satisfy the 

system of equations: 

  


2a + b + c + 2d = 0

− 2a − b − c + d = 0
  

 

Adding the equations gives 3d = 0, so d = 0. 

Then c = − 2a − b. This gives: 

a b − a − b 

−2a − b 0 2a + b 

a + b − b − a 
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By taking a = 1, b = 0 and b = 1, a = 0 we can obtain a 

basis for ker (T): 

 

1 0 −1  0 1 −1 

−2 0 2  −1 0 1 

1 0 −1  1 −1 0 

 

So T has nullity 2. The image of T is clearly ℝ, which is 

1-dimensional, so dim Q3 = 1 + 2 = 3. 

 

 An isomorphism  f:U → V (often called a non-

singular linear transformation or an invertible linear 

transformation) is a linear transformation that is both 1-

1 and onto. Like any 1-1 and onto function it has an 

inverse f −1. In this case the image is V and the kernel is 

{0}. So the rank is dim(V) and the nullity is 0. Hence 

dim(V) + 0 = dim(U). 

 If there exists a isomorphism f:U → V we say that 

U and V are isomorphic, and write U  V. Since rank plus 

nullity is the dimension of the space you’re mapping 

from, dim(V) = dim(U). Hence isomorphic vector spaces 

have the same dimension. 

 Conversely if U and V have the same dimension 

(over the same field) then they are isomorphic. One only 

has to take a basis for each, {u1, …, un} and {v1, …, vn} 

and map 1u1 + … + nun to 1v1 + … + nvn. 

  

 Isomorphic objects in any algebraic setting can be 

thought of as being the same, when viewed in isolation. 
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Their structure is the same and they may only differ in 

notation. The isomorphism gives the coding that takes one 

type of notation to another. So we can paraphrase the 

above result by saying that over a given field there is only 

one vector space (up to isomorphism) of each dimension. 

 

 If f is an isomorphism from a vector space to itself 

we call it an automorphism. The most obvious 

automorphism is the identity map I, that takes each vector 

to itself. 

 

Theorem 4: The inverse of an isomorphism is an 

isomorphism. 

Proof: Let f:U → V be an isomorphism. Since f is 1-1 and 

onto, f  −1 exists and f f −1 = f -1f = I. 

Let v1, v2  V. 

Then v1 = f(u1) and v2 = f(u2) for some u1, u2  U. 

So f −1(v1 + v2) = f −1(f (u1) + f (u2)) 

                        = f −1(f (u1 + u2)), since f is linear 

                        = ff −1(u1 + u2) = u1 + u2 

                                     = f −1(v1) + f −1(v2). ☺ 

 

The other property of linearity is proved similarly. 
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§2.3. Coordinates 
  With our definition of vector space there is no 

mention of the coordinates of a vector. Coordinates can 

only be defined once we fix on a particular basis. 

 If v1, v2, … , vn is a basis for the finite dimensional 

vector space V then every vector can be expressed as a 

linear combination 

v = 1v1 + 2v2 + … + nvn, 

because the vi span V, 

and moreover the i’s are unique, for a given v, because 

the vi are linearly independent. 

 

 We define the coordinates of such a  v, relative the 

basis v1, v2, … , vn as (1, 2, … , n). If we have a 

different basis, the coordinates will be different. 

 

Example 5:  The coordinates of (3, 2, 5) relative to the 

standard basis are (3, 1, 5) because 

(3, 2, 5) = 3(1, 0, 0) + 2(0, 1, 0) + 5(0, 0, 1). 

What are the coordinates relative to the basis 

(1, 1, 0), (0, 2, 1), (1, 1, 1)? 

Solution: We must write (3, 2, 5) in the form: 

x(1, 1, 0) + y(0, 2, 1) + z(1, 1, 1). 

This gives us a system of equations: 



 x + z = 3

x + 2y + z = 2

y + z = 5
 . 

Writing this as an augmented matrix and putting this into 
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echelon form we get (leaving out the vertical bar that 

represents the equal signs): 







1 0 1  3

2 1 1  2

0 1 1  5
 → 







1 0  1   3

0 1−1  −4

0 1  1   5
 → 







1 0  1   3

0 1−1 −4

0 0  2   9
 . 

So z = 9/2, y = −4 + 9/2 = 1/2 and x = 3 − 9/2 = −3/2. 

So the required coordinate vector is (−3/2, 1/2, 9/2).  

 

Example 6: The functions sin x and cos x form a basis for 

the space of solutions to the differential equation 
d2y

dx2  + y = 0. 

What is the coordinate vector of sin(x + /6) relative to 

this basis? 

Solution: sin(x + /6) = sin x cos(/6) + cos x sin(/6) 

                                     = ½3 sin x + ½ cos x, 

so the coordinate vector of sin(x + /6) relative to the 

above basis is (½3, ½). 

 

§2.4. Change of Basis 
 Sometimes we’d like to change bases. We may start 

with one basis and then realise that another basis would 

be more convenient. Can we readily move from one 

coordinate vector to another, for the new basis? 

 A basis is not just a set of vectors, because the order 

in which we choose to write them is important. So a basis 

is more like a vector, except that the components are not 
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scalars, they are vectors. But we can write the basis as if 

it is a vector. We write 1, 2, … , n as 

[] = (1, 2, … , n). 

 We’ll write the coordinates of v relative to this 

basis as (1, 2, 3) where 

1 = 






1

1

0
 , 2 = 







0

2

1
 , 3 = 







1

1

1
 . 

Putting this all together we could write the basis as: 

[] = 
































































1

1

1

1

2

0

0

1

1

 which could be written more 

simply as the matrix 
















110

121

101

. 

 We shall write the column vector giving the 

coordinates of v relative the basis [] as 






v


 . 

Example 7: If [] is the first basis in example 18 and [] 

is the second basis, and v = (3, 2, 5), find 






v


  and 







v


 . 

Solution: 






v


  = 







3

2

5
  and 







v


  = 







−3/2

1/2

9/2
 . 
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 It would be nice if we could easily move from one 

coordinate vector to the other, especially if we have 

several vectors to convert. We do this using the change 

of basis matrix. This has, as its columns, the coordinate 

vectors for each of the vectors in the first basis, relative to 

the second. 

 Let [] = (1, 2, … , n) and [] = (1, 2, … , n) 

be two bases for the n-dimensional vector space V. We 

define 









  =  















1


  






2


  






3


 . 

It will be an n  n matrix. 

 

Example 8: Let  = ((7, 16), (2, −1)),  = ((2, 5), (1, 1)). 

What is 









 ? 

Solution: (7, 16) = a(2, 5) + b(1, 1) for some a, b. 

Equating and solving we find that a = 3, b = 1. 

These are the coordinates of (7, 16) relative to . 

Similarly the coordinates of (2, −1) are (−1, 4). 

So 









  = 







3 −1

1  4
  

 

Theorem 5: [] = []









 . 

Proof: 

Let the coordinate vector of j relative to the basis [] be 

(a1j, a2j, … , anj). 

Then for each j, j = a1j1 + a2j2 + … + anjn. 
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So []









 = (1, 2, … , n)







a11 a12 …  a1n

a21 a22 …  a2n

… … … …

an1 an2 … ann

  

                 = (1, 2, … , n). ☺ 

 

Example 9: Let U = ℝ2 = {(x, y) | x, y  ℝ}. 

Let  be the standard bases for U and let 

 = {(1, 2), (1, −1)} 

be another basis. 

1 = (1, 0) = (1/3)(1, 2) + (2/3)(1, −1) (1/3)1 + (2/3)2. 

2 = (0, 1) = (1/3)(1, 2) − (1/3)(1, −1) = (1/3)1 − (1/3)2. 

So 






1


  = 







1/3

2/3
  and 







2


  = 







1/3

−1/3
  and hence 










  = 







1/3  1/3

2/3 −1/3
 . 

[]









 = (1, 2) 







1/3  1/3

2/3 −1/3
  

           = ((1/3)1 + (2/3)2, (1/3)1 − (1/3)2) 

           = (1, 2) 

           = []. 

 

§2.5. The Matrix of a Linear 

Transformation 
 Suppose U, V are vector spaces over the field F, of 

dimensions m, n respectively. 
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Let f:U → V be a linear transformation and let  be a basis 

for U and  a basis for V. We define the matrix of f 

relative to these bases to be: 

 







f()


  = 















f(1)


  






f(2)


     







f(m)


  

 

Example 10: Let U = ℝ3 = {(x, y, z) | x, y, z  ℝ}, 

                             V = ℝ2 = {(x, y) | x, y  ℝ}. 

Let f(x, y, z) = (x + y + z, 2x − y). 

Let  be the standard bases of U and 

let  = {(1, 2), (1, −1)} (another basis for V). 

1 = (1, 0, 0) and so f(1) = (1, 2). 

2 = (0, 1, 0) and so f(2) = (1, −1). 

3 = (0, 0, 1) and so f(3) = (1, 0). 







f(1)


  = 







1

0
  







f(1)


  = 







0

1
  







f(1)


 = 







1/3

2/3
 since (1, 0) = (1/3)(1, 2) + (2/3)(1, −1). 

So 






f()


  = 







1  0  1/3

0  1  2/3
 . 
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Theorem 6: 






f(v)


  = 







f()


 






v


 . 

Proof: Suppose dim U = m, dim V = n. 

Let v = 11 + 22 + … + mm, so that 






v


  = 







1

 … 

 m

 . 

Then f(v) = 1f(1) + 2f(2) + … + mf(m). 

Suppose that f(i) = a1i1 + a2i2 + … + amim for each i. 

Then 






f()


  = (aij). 

So we may express f(v) as 

1(a111 + a212 + … + amim) + …  

                                … + m(a1m1 + a2m2 + … + ammm) 

= (a111 + … + a1mm)1 + … + (am11 + … + amnm)m. 

Hence 






f(v)


 = 







a111 + … + a1mm

 … 

 am11 + … + amnm

 = 






f()


 






v


 . ☺ 

 

 This means that, relative to these bases, the action 

of the linear transformation f is equivalent to multiplying 

the coordinate vector, on the left, by 






f()


 . If you have 

difficulty remembering which symbol goes where in the 

formula 






f(v)


  = 







f()


 






v


  just remove the parentheses 
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and brackets and write 
fv


 = 

f


.
v


 . Then it is just as if you 

are cancelling the ’s. 

 

Example 11: Let v = (1, 1, 1) in example 9. 

Then 






v


  = 







1

1

1
 . 

f(v) = (3, 1) = (4/3)(1, 2) + (5/3)(1, −1) = (4/3)1 + (5/3)2. 

So 






f(v)


  = 







4/3

5/3
  = 







1  0  1/3

0  1  2/3
 






1

1

1
  = 







f()


 






v


 . 

 

Theorem 7: Suppose U, V, W are vector spaces over F, 

with bases , ,  respectively. 

Suppose f:U → V and g:V → W are linear 

transformations. 

Then 






(fg)()


  = 







g()


 






f()


 . 

Proof: This because fg is achieved by first carrying out f 

and following it by g. In terms of the coordinate vectors 

this is equivalent to multiplying 






v


  on the left by the 

matrix for  f  and then multiplying on the left by the matrix 

for g. This is why the order of the matrices is the reverse 

of the linear transformations. If you remember this you 

can remove the parentheses and cancel the ’s on the RHS 

as a way for checking that you have remembered the 

formula.☺ 



 60 

Example 12: Let U = ℝ3, V = ℝ2 and W = ℝ4. 

Let  = ((1, 1, 1), (1, 1, 0), (0, 1, 1)) be the basis for U, 

       = ((2, 3), (−1, 0)) be the basis for V and 

       = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1), (1, 2, 3, 4)) be 

the basis for W. 

Let f:U → V be defined by f((x, y, z)) = (x + y, y + z) and 

let g:V → W be defined by g(x, y) = (x, x + y, x − y, −y). 

Then f(1) = (2, 2), f(2) = (2, 1) and f(3) = (1, 2), so 







f()


  = 







2/3    1/3    2/3

−2/3   −4/3   1/3
 . 

Also g(1) = (2, 5, −1, −3) and g(2) = (−1, −1, −1, 0) so 







g()


  = 









4   −2

9   −3

5   −4

−2   1

 . 







g()


 






f()


  = 









4   −2

9   −3

5   −4

−2   1

 






2/3    1/3    2/3

−2/3   −4/3   1/3
  

                     = 









4   4   2

8   7   5

6   7   2

−2  −2  −1

 . 

(fg)(1) = (2, 4, 0, −2), (fg)(2) = (2, 3, 1, −1) and 

(fg)(3) = (1, 3, −1, −2) 
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





(fg)(1)


  = 









4   4   2

8   7   5

6   7   2

−2  −2  −1

 . 

 

The matrix of a linear transformation f:U → V depends 

on the bases for U and V that we choose. But with 

different bases these matrices would be related to one 

another. 

 

Theorem 8: Suppose ,  are two bases for U and 

suppose that ,  are two bases for V and that f:U → V is 

a linear transformation. 

Then 






f()


  = 










 






f()


 









 . 

Proof: Let i = a1i1 + … + amim and 

                   i = b1i1 + … + bmim for each i. 

Let A = 









 = (aij) and B = 










  = (bij). 

Let f(i) = c1i1 + … + cnin for each i. 

Let C =  






f()


  = (cij). 

Now f(i) = a1if(1) + … + amif(m) 

                 = a1i(c111 + … + cn1n) + … 

                                              … + ami(c1m1 + … + cnmn) 

                 = (a1ic11 + … am1c1m)1 + … 

                                              … + (a1icn1 + … + amicnm)n 
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So 






f(i)


  = 







a1ic11 + … + am1c1m

…

 a1icn1 + … + amicnm

  

                 = 







c11a1i + … + c1mami

…

 cn1cn1 + … + cnmamn

 . 

This is the i’th column of CA. 

Now 






f(i)


  = 










 






f(i)


 . 

This is the i’th column of DCA where D = 









 . 

Hence  






f()


  = DCA = 










 






f()


 









 . ☺ 

 

Again, if you have trouble remembering which symbols 

go in the numerator and which in the denominator, just 

ignore the brackets and parentheses and check that, if they 

were fractions, the right hand side would cancel to equal 

the left hand side: 
f


  = 




 . 

f


 . 



 . 

 

Example 13:  Let U = ℝ2 and V = ℝ3. 

Let  be the standard basis for U and let 

 = ((1, 1), (1, −1)) be another basis. 

Let  = ((1, 1, 0), (0, 1, 1), (1, 0, 1)) be a basis for V and 

let  be the standard basis for V. 

Let f: U → V be the linear transformation 

f(x, y) = (y, x + y, x). 
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Then 









  = 







1 0 1

1 1 0

0 1 1
 ,   







f()


  = 







0 1

1 0

0 0
  and  










  = 







1  1

1 −1
 . 

Hence 









  






f()


  









   =   







1 0 1

1 1 0

0 1 1
 






0 1

1 0

0 0
 






1  1

1 −1
  

                                      = 






0 1

1 1

1 0
 






1  1

1 −1
  

                                      =  






1 −1

2  0

1  1
  = 







f()


 . 

 

Theorem 9: If ,  are bases for a vector space V then: 










  = 










 
−1

. 

Proof: Taking f to be the identity linear transformation, 

and  = ,  =  in theorem 7 we get 

I = 









  = 










 









 









  = 










 









 . ☺ 

 

Theorem 10: Suppose ,  are two bases for V and that 

f:V → V is a linear transformation. 

Then 






f()


  = 










 
−1

 






f()


 









 . 

Proof: The result follows from theorems 6 and 7. ☺ 
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If we removed brackets and parentheses this would 

appear as: 
f


  = 




 . 

f


 . 



 . 

 

We can summarise these last theorems as follows:   










 = I 










  = 










 
−1

 







v


 = 










 






v


  [] = []










  







F(v)


  = 







F()


 






v


  







FG()


  = 







G()


 






F()


  







F()


  = 










 






F()


 









  







F()


  = 










 
−1







F()


 









  

 

 

 

EXERCISES FOR CHAPTER 2 
 

Exercise 1: Let ℝ[x] be the space of all real polynomials 

in x. Define : ℝ[x] → ℝ3 by (f(x)) = (f (1), f (2), f (3)). 

Show that  is a linear transformation and find ker  and 

im . 

 

Exercise 2: Find the coordinates of (1, −5, 7) relative to 

the basis (2, 1, −1), (1, 0, 1), (−1, 1, 5). 

 

Exercise 3: A parallelogram in ℝ3 has vertices (1, 2, 3), 

(6, 3, 5), (−2, 6, 10), (3, 7, 6). Find the coordinates of these 

points relative to the basis 

(4, 1, 3), (−1, 2, 2), (8, −11, −7). 
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Exercise 4: Find the matrix of the linear transformation 

T(x, y, z) = (x + 2y − 5z, 2x + 3y − z, 3y − 4z) 

with respect to: 

 (i) the standard basis, ; 

 (ii) the basis  = {(1, 1, 0), (2, −1, 2), (3, 0, −4)}. 

 

Exercise 5: Let U = xe
x
, e

x
 and V = 1, x. 

Let DU, DV be the differentiation operator restricted to U, 

V respectively. Find the rank and nullity of each of these. 

 

Exercise 6: 

(i) Show that  = {sin 2x, sin2x, cos2x, 2x} is a basis for 

V = sin 2x, cos 2x, sin2x, cos2x, x. 

(ii) Show that differentiation is a linear transformation 

from V to V. 

(iii) Find the matrix of differentiation relative to this basis. 

 

 

SOLUTIONS FOR CHAPTER 2 
 

Exercise 1: 

[f(x) + g(x)] = (f(1) + g(1), f(2) + g(2), f(3) + g(3)) 

                       = (f(1), f(2), f(3)) + (g(1), g(2), g(3)) 

                       = [f(x)] + [g(x)]. 

[k(f(x))] = (kf(1), kf(2), kf(3)) 

                 = k(f(1), f(2), f(3)] 

                 = k[f(x)]. 
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ker : 

ker  = {f(x) | (f(1), f(2), f(3)) = (0, 0, 0)} 

          = {f(x) | f(1) = 0, f(2) = 0, f(3) = 0} 

          = (x −1)(x − 2)(x − 3) ℝ[x] 

    (this is the set of all multiples of (x − 1)(x − 2)(x − 3) 

So ker  = (x −1)(x − 2)(x − 3) ℝ[x]. 

im : Suppose (a, b, c)  ℝ3. 

We must find a polynomial f(x) such that 

f(1) = a, f(2) = b and f(3) = c. 

Consider a polynomial f(x) = px2 + qx + r. 

If this satisfies the requirements then 

                               



 p +   q + r = a

4p + 2q + r = b

9p + 3q + r = c
   

So we need to show that this system is consistent. 

We’d would need to be able to solve the equation 

















139

124

111

















r

q

p

 = 
















c

b

a

. 

Since 
















139

124

111

 is a Vandermonde matrix it is invertible 

and so this equation has a unique solution. Thus there 

does exist a polynomial satisfying the requirements. 

 We can explicitly find such a quadratic, without 

solving the above equations, very simply: 
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Take f(x) = (x − 1)(x − 2)(c/3) + (x − 1)(x − 3)(−b) 

                                                + (x − 2)(x − 3)(a/2). 

Clearly f(1) = a, f(2) = b, f(3) = c. 

 

Exercise 2: We must write (1, −5, 7)  in the form: 

x(2, 1, −1) + y(1, 0, 1) + z(3, 2, 5). 

This gives us a system of equations that can be 

represented as: 

 

















−

−

− 7

5

1

5

1

1

1

0

1

1

1

2

 → 














 −

−

− 7

1

5

5

1

1

1

1

0

1

2

1

 → 














 −

−

2

11

5

6

3

1

1

1

0

0

0

1

 

→ 
















−

−

−

9

11

5

9

3

1

0

1

0

0

0

1

 → 
















−

−

−

1

11

5

1

3

1

0

1

0

0

0

1

. 

So z = − 1, y = 11 − 3 = 8, x = −5 + 1 = − 4. 

Hence the coordinates of (1, −5, 7) relative to the basis 

(2, 1, −1), (1, 0, 1), (3, 2, 5) are (−4, 8, −1). 

 

Alternatively, we can write  = standard basis,  = this 

new basis and v = (1, −5, 7). 

Then 






v


 = 

1

5

7

 
 
− 

 
 

 and 









 = 

2 1 1

1 0 1

1 1 5

− 
 
 
 − 

. 
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Now 






v


  = 










 






v


  and 










  = 










 
−1

= 

1
2 1 1

1 0 1

1 1 5

−
− 

 
 
 − 

 

= 

1 6 1
1

6 9 3
9

1 3 1

− − 
 

− − − 
 − − 

. 

Hence 






v


 = 

1 6 1
1

6 9 3
9

1 3 1

− − 
 

− − − 
 − − 

1

5

7

 
 
− 

 
 

 

                  = 

36
1

72
9

9

 
 

− − 
 
 

 = 

4

8

1

− 
 
 
 − 

. 

For a single vector this is more work, but if we have 

several it becomes quite efficient. 

 

Exercise 3: Let  be the standard basis and let  be this 

new basis. Then 









  = 

4 1 8

1 2 11

3 2 7

− 
 

− − 
 − 

. 

Hence 









 = 










 
−1

= 
1

234

 
 
 

36 9 27

26 52 52

8 11 7

 
 
− − 

 − − 

. 
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So 

1

2

3

 
 
 
 
 

 → 
1

234

 
 
 

36 9 27

26 52 52

8 11 7

 
 
− − 

 − − 

1

2

3

 
 
 
 
 

  

                                           = 
1

234

 
 
 

135

26

35

 
 
 
 − 

 

      

6

3

5

 
 
 
 
 

 → 
1

234

 
 
 

36 9 27

26 52 52

8 11 7

 
 
− − 

 − − 

6

3

5

 
 
 
 
 

  

                                            = 
1

234

 
 
 

378

52

20

 
 
− 

 − 

 

     

2

6

10

− 
 
 
 
 

 → 
1

234

 
 
 

36 9 27

26 52 52

8 11 7

 
 
− − 

 − − 

2

6

10

− 
 
 
 
 

  

                                             = 
1

234

 
 
 

252

260

152

 
 
 
 − 

 

       

3

7

6

 
 
 
 
 

 → 
1

234

 
 
 

36 9 27

26 52 52

8 11 7

 
 
− − 

 − − 

3

7

6

 
 
 
 
 
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                                                 = 
1

234

 
 
 

333

130

95

 
 
− 

 − 

. 

 

Exercise 4: (i) 
















−

−

−

430

132

521

; 

(ii) T(1, 1, 0) = (3, 5, 3), T(2, −1, 2) = (−10, −1, −11), 

T(3, 0, −4) = (23, 10, 16). 

We must now find the coordinates of these images 

relative to the basis . 

Let (3, 5, 3) = x(1, 1, 0) + y(2, −1, 2) + z(3, 0, −4). 

















−

−

3

5

3

4

0

3

2

1

2

0

1

1

 → 
















−

−−

3

2

3

4

3

3

2

3

2

0

0

1

 → 
















−

−

3

8

3

4

11

3

2

1

2

0

0

1

 

 → 
















−

−

13

8

3

18

11

3

0

1

2

0

0

1

. 

So z = − 
13

18
 , y = 8 − 

143

18
  = 

1

18
 and x = 3 − 

2

18
  + 

39

18
  = 

91

18
 

. 

Let (−10, −1, −11) = x(1, 1, 0) + y(2, −1, 2) + z(3, 0, −4). 
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















−

−

−

−

−

11

1

10

4

0

3

2

1

2

0

1

1

 → 
















−

−

−

−−

11

9

10

4

3

3

2

3

2

0

0

1

 

→ 
















−

−

−

−

−

11

13

10

4

11

3

2

1

2

0

0

1

 → 
















−

−

−

15

13

10

18

11

3

0

1

2

0

0

1

. 

So z = 
15

18
 = 

5

6
 , y = − 13 + 

55

6
  = −  

23

6
  and 

x = −10 + 
46

6
 −  

15

6
  = − 

29

6
 . 

Let (23, 10, 16) = x(1, 1, 0) + y(2, −1, 2) + z(3, 0, −4). 

    
















−

−

16

10

23

4

0

3

2

1

2

0

1

1

 → 
















−

−

−−

16

13

23

4

3

3

2

3

2

0

0

1

 

→ 
















−

−

16

19

23

4

11

3

2

1

2

0

0

1

 → 
















−

−

22

19

23

18

11

3

0

1

2

0

0

1

. 

So z =  − 
11

9
 , y = 19 − 

121

9
  = 

50

9
  and 

x = 23 − 
100

9
  + 

33

9
  = 

140

9
 . 

Hence the coordinates of the images with respect to  are, 

respectively, 
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















−13

1

91

18

1
, 

















−

−

15

69

87

18

1
, 

















− 22

100

280

18

1
. 

The matrix of T with respect to  is therefore 

















−−

−

−

221513

100691

2808791

18

1
. 

 

However it is much easier to use the change of basis 

theorems. 







T()


 = 

















−

−

−

430

132

521

 










 = 

















−

−

420

011

321

. 

Hence 









 
−1

= 

1

420

011

321
−

















−

− = 
















−−

−

322

344

3144

18

1
. 







T()


  = 










 
−1







T()


 









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         = 
















−−

−

322

344

3144

18

1

















−

−

−

430

132

521

















−

−

420

011

321

 

          = 
















−−

−−

−

4112

2854

465932

18

1

















−

−

420

011

321

 

          = 
















−−

−

−

221513

100691

2808791

18

1
. 

 

Exercise 5: The kernel of D is the set of all constant 

functions. 

Since 1  U, ker DU = 0. 

Hence rank(DU) = 0 and so nullity(DU) = 2. 

Since 1  V ker DV = 1. 

Hence rank(Dv) = 1 and so nullity(DV) = 1. 

 

Exercise 6: 

(i) cos 2x = cos2x − sin2x and x = ½ (2x) so 

V = sin 2x, sin2x, cos2x, x. That is,  spans V. 

We must now show that  is linearly independent. 

Suppose p sin 2x + q sin2x + r cos2x + sx = 0 for all x. 

Put x = 0: Then  r + s = 0.                                    ... (1) 

Put x = /4: Then p + ½ q + ½ r + ¼ s = 0        ... (2) 

Put x = /2: Then  q + ½ s = 0.                          ... (3) 

Put x = : Then  r + s = 0.                                  ... (4) 
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From (1), (4) we conclude that s = 0. From (1) we now 

conclude that r = 0. 

From (3) we conclude that q = 0. From (2) we conclude 

that p = 0. 

Hence  is a linearly independent set and so is a basis for 

V. 

 

(ii) We know that differentiation is a linear 

transformation. What is at issue here is whether its image 

is a subset of V. Letting D represent differentiation we 

have: 

D sin 2x = 2cos x.2x = 2cos2x − 2sin2x  V, 

           D sin2x = 2sin x.cos x = sin 2x  V, 

           D cos2x = − 2sin x.cos x = − sin 2x  V. 

           D x = 1 = sin2x + cos2x  V. 

(iii) We can now write down the matrix of D relative to 

the basis  as 





















−

−

0000

0002

1002

0110

 . 


